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MFS Theory
1

Apstract

Multilinear Formula Score theory provides powerful methods tor solvin,
psychological measurement problems ot long standing. In this paper the
question of information in incorrect option selection on multipie choice
items is addressed. Multilinear formula scoring (MFS) i, r'irst used to
estimate option characteristic curves for the Armed Services Vocational
Aptitude Battery Arithmetic Reasoning test. Accurately estimated curves ate
obtained for real! and simulated data. Then the statistical information
about ability is computed for dichotomous and polychotomous scorings of the
items. Moderate gains in information are obtained for Jow to slightly above
average abilities. The dichotomous and polychotomous models are then
compared for their relative performances in appropriateness measurement .

The rates of detection of some types ol aberrance responding were more than
100% higher for optimal polychotomous appropriateness indices than any
dichotomous model index. Consequent!y the MFS polychotomous model provide.
opportunities for better testing by allowing more accurate ability
estimates, improvements in the theory and practice of i1tem writing, and more

powerful appropriateness measuremcnt,
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MFS Theory

Introduction

Multilinear formula score theory or multilinear formula scoring (MFS;
Levine, 1985a, 19850) (s a nonparametric ites response theory for which
consistent 5nd asymptotically efficient estimators of ability densities,
item characteristic curves (ICCs), and option characteristic curves (0CCs)
have been derived and programmed. MFS provides a powerful new approach to
substantive questions of long standing. These questions include determining
the shapes of ability distributions and the magnitudes of differences
between ability distributions of various groups, determining the shapes of
item characteristic curves for unidimsensional and multidimensional tests,
identifying biased and other faulty items, and assessing the extent to which
two tests measure the same ability.

In this paper we focus on MFS's ability to estimate efficiently option
response curves from small samples for responses that may fail to satisfy
the local independence assumption of {tem response theory. The benefits of
this endeavor shall be asaessed in two ways., First, we determine the
increase in information about ability due to polychotomous scoring of ftem
responses. Here the term "information™ is used in 1ts stati{stical sense to
mean the expected squared derlvaﬁlve of the logarithm of the likelihood
function. Since the asymptotic standard error of the maximum likelihood
estimate of an ability 6 equals the square root of the reciprocal of the
information function at © , an increase in information due to polychotomous
scoring is readily translated into percent test length reduction made
possible by polychotomous scoring.

The second comparison is between the dichotomous and polychotomous |{tem
response model's potentials for supporting appropriateness measurement.

Levine and Rubin (1979) introduced this term to refer to model-based methods

2
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for detecting response patterns that yield faulty measures of ability. For
example, test scores are spuriously high when a low ability examinee copies
some answers from 4 high ability neighbor or has been given answers to some
questions by an informant. Spuriously iow test scores result from alignment
errors, atypical educations, unusual creativity, deliberate fajilure, ana a4
variety of other sources,.

Of course, the model-based detectability of a particular type of
aberrance depends upon the jtem response model used to analyze the data;
more specific (polychotomous) models are expected to be rejected more
frequently when fitted to aberrant response patterns and thus provide
superior appropriateness measurement. Recently Levine and Drasgow (1984,
1987) developed a technique for computing the power of the most powerful
appropriateness measurement procedure supported by an item response model.
By combining the new optimality results with MFS's ability to accurately
recover the option characteristic curves needed for polychotomous modeling
we intend to determine whether polychotomous modeling is negligibly or
markedly superior to dichotomous modeling in detecting test anomalies.

This study also contributes to formula score theory in that it contains

a verification of MFS theoretical results with simulation data.,

Review of Multilinear Formula Score Theory

In this section we review MFS theory as it 13 used in this paper. The
theory 13 more general than outlined here, but for the sake of clarity we
describe only the special rase required for the present research.

Let g denote the response to the {th jtem of an n {tem test

acored ul = 1 {f correct and ui = 0 1if incorrect, The uy generate the

elementary formula scores, which can be enumerdted as
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Traditional formula scoring (Lord and Novick, 1968, especially Chapter
14) generally uses only linear scores. When there is neither omitting nor

polychotomous scoring, linear formula scores are formulas with a constant

term plus a linear combination of the binary item scores, Uy, u2, ey un .

(When there is omitting and polychotomous scoring, a linear score is a
constant plus a linear combination of binary variables indicating omitting
and option choice.)

Multilinear formula score theory generalizes traditional formula score
theory by using quadratic scores (linear scores added to linear combinations

u_ ), cubic scores (quadratic scores plus linear

of u,u
n-1'n

1Y2r Yy
combinations of products of item scores for three different items), and

se e u

higher order scores. Most of the results in this paper were obtained with
fifth order scores. The new theory is called "multilinear" because frequent
use is made of the fact that when all the scores except one are held
constant, a "linear" score is obtained.

In this paper we shall assume that the regression of u1 on the latent

trait 8 1s a three-parameter logistic ogive

1 - c1

15 T expf:Dai(t - b17]

ECuy [0 =t)=c

= P’,(t) »




MFS Theory

5

where D is a scaling constant set equal to 1.702, a1 is the

discrimination parameter, bi is the difficulty parameter, and c1 is the
lower asymptote of the ICC. By local independence, the regressions of the

elementary formula scores on the latent trait can then be written

1
P1(t), P2(t), ceey Pn(t)
PLEIP, (L), P(EIPL(L), vuuy P ()P (1)

P1(t)P2(t) ces Pn(t) ’

where each Pi(t) is a three-parameter logistic ICC.

There are 2n regression functions listed above., More can be
generated by taking linear combinations of the elementary formula scores and
then computing their regressions on the latent trait. For example, the

number-right score

has the regression
n
E(X | t) = ¢ P () .
i=1

The collection of regression functions of all linear combinatione of

elementary formula scores is called the canonical space of a test.

A major step in a MFS analysis of a test consists of finding a smaller
number of functions to represent the large number (in fact, an infinite
number) of functions in the canonical space. The smaller collection of

functions is called an orthonormal basis for the canonical space.
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Selecting an orthonormal basis for the canonical space is analogous to
finding the principal components of a set of variables. In a principal
components analysis, the basi~ idea is to create a new set of variables, the
principal components, so that each of the original variables can be written
as a linear combination of the principal components plus a small residual.
A principal components analysis is valuable when there is a large number of
original variables and the first few principal components explain almost all
of their variance. In the same way functions in the canqnical space are
written as linear combinations of the orthonormal basis functions. For
example, the ICC for the ith item can be written
K

P.(t) =L ah(t),
i k=1 k 'k

where K functions, denoted h1(t), ceey hK(t) are used in the orthonormal
basis and the @, are the weights used in the linear combination. If K
is sufficiently large, this representation is exact. If only the first J

functions are used, instead of all K functions (where J 1is less

than K ), then there is some error. However, the residual

J K
P(t) - T ah(t) = I ah(t)
i k=1 k k J+1 k 'k

will be small if the a, are small for values of k 1larger than J . In
2 2

fact, the area under the squared residual is exactly oJ+1 + aJ+2 + tee

a2
K L)
In each MFS analysis a parsimonious representation of one or another
collection of functions in the CS is important. MFS provides techniques
that yleld basis functions that give small a for large Kk , at least for

the collection of functions being analyzed. Most MFS analyses require six
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7
to eight basis functions for an adequate representation of the functions
being studied. Ten were used in this study.
To recapitulate, the analysis begins by estimating ICCs from the
dichotomously scored item responses. Widely available programs such as
LOGIST and BILOG can be used to this end. The estimated ICCs (and the
assumption of local independence) are subsequently used to define the
canonical space. Then a small number of orthonormal basis functions are
selected so that the functions in the canonical space are well-approximated
by linear combinations of the orthonormal basis functions.
The next step of the MFS analysis is to use the orthonormal basis

functions to represent the option characteristic curves (0CCs). For

technical reasons (see below), we first estimate orthonormal basis function

weights for conditional option characteristic curves (COCCs). A COCC gives

the probability of an option choice given that the person does not choose
the correct option. A COCC equals its associated OCC divided by (1-P1(9)).
Hence the COCCs for an item sum to 1 for all 6 values whereas the 0CCs
sum to {-Pi(e), which becomes very small for large 0 values. Each option
characteristic curve is then represented as the product of two linear
combinations of the hj's , namely the representation of 1-Pi and a COCC.
At this point the OCC can be represented by a single set of weights by
calculating weights bj's such that ijhj(-) is approximately equal to
(1-P1) times the CUOCC value. (An exact representation is not possible in
general because a product of two functions in the canonical space is not
necessarily in the canonical space.)

Since 0OCCs and COCCs were not included in the set of functions used to

define the canonical space, there is both the mathematical question of how

best to approximate the OCCs and COCCs by basis functions and the
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substantive question of whether or not the basis functions can adequately
approximate OCCs and COCCs. The analysis proceeds item-by-item with the
weights for all the options (including omit as an option) to each jtem
simultaneously estimated by "marginal” maximum likelihood. The log

likelihood that is maximized with respect to the weights is

N
(1) L =JE1 log P(ug, v*i*J) '
where u; is a vector containing the dichotomously scored item responses of
the Jjth examinee and vgj indicates the particular option on item 1
selected by examinee j . For a four option multiple-choice item, v;j =1
if option A 1is selected, ... vgj = Y4 if option D is selected, and
v*1J =5 if no response is made. Suppose all the items are recoded so

that option A 1is always the correct response. Then Equation 1 can be

rewritten as

N
(2) L = I log P(u¥) +
3= J
V;J-1
N
321 log [ P(u | t) P(v, | & vy =0)f(t)at
VzJﬂ
where
n uy 1--uij
(3) P(u* | t) = 1 P (t) I - P ()] ,
3 a1 i
J
4 * = = h ’
(4) P(v1J | t, Uy 0) kf1 ah (t)

6'|
c."

',-,l‘c‘ p ‘ ’0 l‘ O O
0\.)&\ t'a‘ ,,i.'lzg'l 'llg’i‘g'i. ‘0 ‘\ :l ':‘ i
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and f(t) 1is the ability density. Notice that Equation 3 is the likelihood
function for the three-parameter logistic model [i.e., Lord's (1980)
Equation (4-20) and Hulin, Drasgow, & Parson's (1983) Equation (2.6.2)). It
is the ak's in Equation 4 that are to be estimated. Actually, each option
has its own set of J ak's , but to avoid notational complexity we have not
added another subscript to the ak's .

It is important to observe that local independence is not used to
derive Equation 2 from Equation 1; only the definition of conditional
probability is used. Tnus, even when skipping items or not :eaching items
(response "5") fails to obey the assumption of local independence, an
accurate estimate of the conditional probability of non-response for
examinees at each ability level may be obtained.

Quadratic programming is used to obtain maximum likelihood estimates of
orthonormal basis function weights for the COCCs in Equation 4. The weights
a, for the COUCCs are easier tu estimate than the weights for 0OCCs since the
JCCs for easy items anc UCCs for rarely chosen options are close to zero,
Wwhich causes the a to become indeterminate; COCCs are not usually close
tn zerc. CZince the L7 at & = t 18 eqQual to the COCC times 1t - Pi(t) ,
the OCTs are available after the ZOCCs have been obtained. The COCCs are
intrinsically interesting a5 welli 1s mdthematicaliy tractable since their
shapes can be used tu study tne properties of effective distractors.

The quadratiz programming methods used by Levine and Williams (1987)
are convenient because they allow plausible constraints to be placed on the
CoCCs. One constraint is positivity: CuCCs are not allowed to become
negative. In our analyses 31l CUOCCs were required to equal or exceed .001.
A second constraint placed on CUOCCs is smoothness: The COCCs were not

allowed to oscillate widely. The smoothness constraint can be implemented

NN 0 QRN Aty / A8 SRR
h'\t\‘,}n,‘.\"' WL ',‘ ' X 9 .'14- .' | by ! ‘.I ;.i..og

'Q i":l.‘ ',
AR ST N A RN K AR )

9
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by restricting the third derivative of the COCCs to be less than .005. Tnia
condition can be thought of as requiring each small piece of tne graph uf
the COCC to have a very accurate quadratic approximation. (A restriotior on
the second derivative would force the COCC to be locally linear and a first
derivative constraint would force the COCC to be locally constant.)

In summary, orthogonal basis functions nj(t) are derived from [ s,
which are estimated by programs such as LOGIST or BILOG. COCCs are
represented as linear combinations of the basis functions in E3. 4, and
marginal maximum likelihood estimates of the weights uJ in this equation

are obtained. OCC values can then be obtained by multiplying CUCC values

times (1—P1) .

Estimation and Information

Data set. The data set used in our analyses was a spaced sample of

2978 examinees; this data set is fully described in the Profile of American

Youth (1982). These examinees answered the 30 item Armed Services
Vocational Aptitude Battery (ASVAB) Arithmetic Reasoning (AR) test. Each
item on this test has four options.

ICC estimation. The first step in the MFS analysis is to estima‘~

ICCs from the dichotomously scored item responses. To tnhnis end, the 1item
responses of the examinees described above were scored dichotomousiy. Aji.
unanswered items were scored as incorrect (since skipping and not reaich:ng
are treated as a separate--and incorrect--response option). Thnen the ...} .1
(version 2B) computer program (Wood, Wingersky, & Lord, 19°%) was usec !.
estimate item and person parameters, Estimates of item discrimination

parameters ranged from about 0.5 to 2.0 and estimates of 1tem 11ff1 uilies

varied from about -3.0 to 1.4 (mean = .14, SD = .99).
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for all 11,914 examinees in the American Youth data set, forming 25 ability

stratd on the basis of eatimated abilities by using the 4th, 8th, ..., 96th
percentile points of the standard normal distribution as cutting scores, and
tnen computing the proportion of examinees selecting each option among the
subgset of examinees who answered the item incorrectly. The centers of the
vertical lines correspond to the observed proportions and they are plotted
above the category medians (the 2nd, 6th, ..., 98th percentile points of the
standard normal distribution). The vertical lines represent approximate 95%
confidence intervals for the observed proportions (t two standard errors,
where the observed proportion is used to compute the standard error).
QOvserved proportions of 0 and 1 are plotted as plus signs and are offset
slightly from their true locations so that they will be visible.

The AR items seem Lo be more-or-less ordered by difficulty.
Consequently, the 953 confidence intervals for the first few items in
Appendix 1 are very wide because these items are easy and so few examinees
choose incorrect options, Confidence intervals for later jtems are much
narrower and provide a severe test for COCC estimates. Item 27, for
example, shows that the COCC estimates provide a very good description of
option choice. Notice that the COCC for the omit category lies below most
observe. propourtions. This occurs because examinees with high omitting
rates were excluded from the sample used to estimate COCCs, but were
included in the total sample used to compute the proportions displayed in
Appendix 1.

COCC estimation verification. The figures presented in Appendix 1 show

thdat MFL estimates of COCCs closely follow the actual patterns of item

responses. [t i3 difficult, however, to understand the accuracy of COCC

estimates from these figures because the true COCCs are not known., To gain
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further insights into the properties of MFS estimates of COCCs, a simulation
data set of 3000 response patterns was generated. Simulated abilities were
sampled from the standard normal distribution, probabilities of correct and
incorrect responses were determined from the ICCs obtained by the LOGIST run
described previously, and probabilities of option selections (for responses
simulated to be incorrect) were computed using the MFS estimated COCCs.
Thus, the assumptions used to estimate COCCs correspond exactly to the way
in which the data set was generated.

COCCs were re-estimated from the simulation data set. The true ability
density (the standard normal) was used in Equation 2 and the true ICC values
were used to compute probabilities of correct and incorrect responses. The
true ability density and ICC values were used because we wanted to determine
the errors of COCC estimates in a way that was not confounded with
inaccuracies in density estimates and ICC estimates.

The results of the simulation study are shown in Appendix 2, which
presents the re-estimated COCCs for all 30 items. Heavy lines indicate the
re-estimated COCCs and thin lines indicate the true COCCs. Observed
proportions and their approximate 95% confidence intervals are shown for the
simulation sample of N = 3000. The observed proportions are not plotted if
five or fewer incorrect responses were made in an ability stratum.

Item 2 shows estimated COCCs that are very close to the true COCCs for
all ability levels. This is remarkable because there were almost no
incorrect responses made by simulated examinees with above average ability.
Item 3 shows that we cannot always expect to have well-estimated COCCs when

there are no data available: Large differences between true and estimated

COCCs occur at high ability levels. The COCCs are, however, accurately
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estimated in ability ranges for which there were very few incorrect
responses.
From an inspection of the plots in Appendix 2 it seems evident that

COCC values are accurately estimated when there are six or more incorrect
responses in adjacent ability strata. Sometimes COCC values are well-
estimated when fewer jncorrect responses are avajilable, but this seems to be
a matter of chance. Notice, also, that COCCs for the omit option are not
underestimated in this analysis as they were in the analysis of the real AR
data. [In the present -nalysis, all response vectors were used; there was no
restriction on omitting as in the previous analysis. In this simulation
study data were unidimensional in the senae that the probability of omitting
depended only on ability, although it was permitted to vary from item to
ftem. It would have been more realistic to use a two dimensional simulation
model with examinees varying both in ability and tendency to omit.

Information function. Information functions for the dichotomous and

polychotomous modelings of the AR test are shown (n Figure 2. An expression

for the i{nformation function of the three-parameter logistic mode] {s

2 2
[Pi(t)] LQ;(:)J

(5) Information at t = f —FTTIT—- . f 15:r€7—- s
where Q1 -1 - Pl and P; and Qi are the firsat derivatives of P1 and
4 The tnformation function of the polychotomous model 13

TR ok (vi)
(6) Informatinn at t « [ T LI ).‘ T

i { T -

where PU 13 the JCU for option j on item 1 and PlJ i3 1ts first

derivative, The correct 2ption makes the same contribution Lo information

for both the Jdi-hotomous ind polycnotomous 3curings, Namely, the first term
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on the right sides of Equations 5 and 6. Thus, any differences in
information are entirely due to the treatment of incorrect responses. Using

Jensen's inequality (Halmos, 1950) it can be shown that

2 2
J [P!.(¢t)] [Q! ()]
i 2 i
o2 Py ® q,(0)

(ef., Samejima, 1969; Park, 1983). Thus, any increase in information is

entirely due to polychotomous scoring.

Insert Figure 2 about here

Figure 2 shows that there are moderate gains in information due to
polychotomous scoring of the AR items for low to moderately high abilities.
Little or no information is gained for high ability examinees; this latter
finding is not surprising because high ability examinees are expected to
answer nearly all the items correctly.

It should be noted that the AR items were not written with
polychotomous scoring in mind and so the gains in information shown in
Figure 2 are more-or-less accidental. Larger gains might be realized if
item writers knew the attributes of incorrect options that typically lead to

substantial increases in information.
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Appropriateness Measurement

Purgose

In this section we compare the effectivenesses of dichotomous and
polychotomous models for detecting aberrant responses patterns. By
comparing detection rates of optimal indices it is possible to compare the
maximum detection rates possible for a given form of aberrance. In this
section, as in the previous section, the dichotomous model is a submodel of
the polychotomous model; hence any increase in detection rates is due to
modeling incorrect responses.

For an optimal index to be truly optimal, it must be computed from the
true ICCs or OCCs and, therefore, the optimal indices for dichotomous and
polychotomous scorings of the simulation data were computed using the
simulation ICCs and OCCs. In any practical application, however, only
estimated ICCs and OCCs will be available. Consequently, we decided to
examine one aspect of the robustness of optimal indices by computing the
optimal index for dichotomously scored responses using ICCs estimated by the
LOGIST (Wood, Wingersky, & Lord, 1976) computer program. Further research
designed to develop extensions of optimal indices for use in practical
settings will be warranted if the optimal indices computed from estimated
ICCs are found to be nearly as powerful as optimal indices computed from the
true ICCs.

Several practical indices were also evaluated. Most of these indices
were computed from the dichotomously scored item responses. One index,
however, i3 the natural extension of a dichotomous model index to the
polychotomous case. Detection rates for the practical indices indicated (1)

which were relatively more powerful and less powerful; and (2) the extent to

which the maximum detection rates were attained.
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Overview
The ICCs and OCCs estimated for the AR test from the sample of N =
2,978 were used as the "true" item parameters in a simulation study.
Initially, a sample of N = 3000 simulated response patterns was created and
used as a test norming sample. This data set was used to determine the item
and test statistics required to compute all but one (zp) of the practical
appropriateness indices listed in the next section. Then a normal sample of
N = 4000 responses vectors was created. In addition, sixteen aberrant
samples of N = 2000 were generated to simulate several forms of aberrance.
Optimal indices and all the practical indices were then computed for the
normal sample and aberrant samples. Rates of hetection of aberrant
responses vectors at various false alarm rates were determined for each
appropriateness index and each form of aberrance.

Appropriateness Indices

In this section we list the appropriateness indices that are evaluated.
For the sake of brevity we shall not provide extensive technical detail.
This information is given by Levine and Drasgow (1984; 1987) for optimal
indices and by Drasgow, Levine, and McLaughlin (1987) for practical indices.
Additional references are given when appropriate.

Polychotomous model optimal indices (LRp). Levine and Drasgow (1984)

used the Neyman-Pearson lemma to derive a class of most powerful
appropriateness indices. These indices require the probabilities of
observing the polychotomously scored response vector v* assuming that it

was generated by a normal process (P (v*)) and assuming that it was

Normal

generated by a specified aberrant process | (v*)) . The

PAber‘rant

decision procedure that classifies response vectors as aberrant when

(v*) 2 constant - (v*) ,

PAberr'ant

PNormal
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where the constant is chosen to control the false alarm rate or Type I error
rate, is at least as powerful as any other test. Thus, the polychotomous
model optimal indices studied here have the form

LR =P (v*) /7 P

*
p Aberrant vh)

Normal

where the probabilities are computed using three-parameter logistic ICCs to
determine conditional probabilities of correct responses and MFS 0OCCs to
determine conditional probabilities of incorrect responses. Technical
details about the form of LRp for specific types of aberrance and an
efficient computing algorithm are given by Levine and Drasgow (1984; 1987).

Dichotomous model optimal indices (LR,). These indices are identical

to the LRp indices except that the only information used in their
calculation is the pattern of correct and incorrect responses u* , i.e.,
the dichotomously scored item responses. This class of indices, therefore,
provides the highest rates of detection when the choice of incorrect option
is ignored.

Dichotomous model optimal indices computed using estimated item

parameters (LR}). For optimal indices to be truly optimal they must be
computed using item parameters -- not item parameter estimates. In previous
work (Levine & Drasgow, 1982), we found that the values of some
appropriateness indices were almost unaffected when item parameter estimates
were used in place of item parameters. In the present research, optimal
indices for the three-parameter logistic model were also computed using
estimated item parameters.

Dichotomous and polychotomous model standardized (z, and zp).

9
These indices, originally developed by Drasgow, Levine, and E, Williams

(1985), are well-standardized (i.e., their conditional distributions given
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ability are nearly invariant across ability levels) and are, therefore,
well-suited to practical applications. In essence, they compare the
likelihood of a vector of item responses to the expected likelihood given
the examinee's ability estimate. In previous research (Levine & Rubin,
1979; Levine & Drasgow, 1982,; Drasgow, Levine, & E. Williams, 1985), it has
been found that aberrant response vector tend to have likelihoods that are
smaller than expected of normal response vectors, and thus, the standardized
likelihoods 2z, and zp serve as effective appropriateness indicesf

Fit statistic (F1 and F2). Two fit statistics suggested by Rudner

(1983) as generalizations of Rasch model fit statistics used by Wright and

his colleagues are

n

1 _ " a2 - 2
F1 = & 151 [u1 Pi(e)J / [Pi(e)Qi(e)J
and
F2 == ¢ [u, - P, (8)]°7 ¢ P_(8)Q,(0) .
n =1 i i =1 i i

Notice that F1 and F2 tend to be large when an examinee misses items
(u1 = 0) that should be answered correctly (Pi(g) near j) and correctly
answers (u1 = 1) items that should be very difficult (Pi(a) near 0) .
Drasgow, Levine, and McLaughlin (1987) found F2 to be well-standardized.
F1, however, was badly standardized because relatively many large values
were observed for simulated normal, high ability examinees.

Caution indices (S, T2, and T4). Three "caution" indices were

evaluated, The first is the original Sato caution index S described by
B Sato (1975) and Tatsuoka and Linn (1983). The other two caution indices are

L the second (T2) and fourth (TU4) standardized extended caution indices

-
o
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\; developed by Tatsuoka (1984). Drasgow, Levine, and McLaughlin (1987) found

| T4 to be better standardized than T2 , so T4 should be preferred when

. their detection rates are comparable.

‘af Likelihood function curvature statistics (JK and 0/E). It is expected

that the likelihood function will be "flatter" for aberrant response vectors

~

than normal response vectors at the maximum likelihood ability estimate 6 .
Two indices that provide measures of the flatness of the likelihood function
were evaluated. The first (JK) 1is a normalized jackknife estimate of the

-~

variance of 6 and the second is the ratio of the observed and expected

. . e -~

information about ability contained in the dichotomously scored item

| responses. Both of these indices are described by Drasgow, Levine, and
L-f McLaughlin (1987), who showed that JK and O/E are well standardized.
)
[}

Method

Data Sets. A test norming sample of 3000 responses vectors was created

by sampling 3000 numbers (6's) from the normal (0,1) distribution

T truncated to the [-5.0, 3.5] interval. A normal sample of 4000 response

P vectors was also generated in this way. Two thousand aberrant response
vectors were created in each of sixteen conditions. These conditions

k}{ resulted from varying three factors: the type of aberrance (spuriously
high; spuriously low), the severity of aberrance (mild; moderate), and the
distribution from which simulated abilities were sampled.

Eight of the aberrant samples contained spuriously high response

vectors and the remaining eight samples contained spuriously low responses
g vectors. Spuriously high responses patterns were created by first

Yy generating normal response vectors (using the AR three-parameter logistic
ICCs to determine the probabilities of correct responses and the AR COCCs to

; determine probabilities of incorrect option selection) and then replacing a

i) ' 4 R I 3
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given percentage k of simulated responses (randomly sampled without
replacement) with correct responses. Spuriously low response patterns were
also created by first generating normal response vectors. Then a fixed
percentage of items were randomly selected without replacement and the
responses to these items replaced with random responses ( i.e., a response
was replaced by option A with probability .25, by option B with
probability .25, ..., and by option D with probability .25). Mildly
aberrant response patterns were generated by using k = 17% (i.e., 5 of 30
items). Moderately aberrant response patterns were created using k = 33%
(i.e., 10 of 30 items).

The third variable manipulated was the ability level of the aberrant
sample. Abilities for the spuriously high samples were sampled from four
parts of the normal (0,1) distribution truncated to [-5.0, 3.5]: very low
(0th through 9th percentiles), low (10th through 30th percentiles), low
average (31st through 48th percentiles), and high average (49th to 64th
percentiles). 1In all cases percentile points were determined after the
truncation to [-5.0, 3.5]. These intervals were used because it is more
important to detect spuriously high response patterns for low ability
examinees than for high ability examinees. Similarly, it is more important
to detect spuriously low responses by high ability examinees. Consequently,
abilities were sampled from four average to high ability strata for the
spuriously low samples: very high (93rd percentile and above), high (65th
through 92nd percentiles), high average (49th through 64th percentiles), and
low average (31st to 48th percentiles). The ability percentiles used here
correspond to the percentiles forming United States Armed Service Vocational

Aptitude Battery mental categories.

s' L
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Analysis. All the item and test statistics required to compute the
practical appropriateness indices were computed using the test norming
o sample. These quantities were computed as the first step in the analysis
» and then used in all subsequent analyses. LOGIST (Wood, Wingersky, & Lord,
1976) was used to estimate three-parameter logistic item parameters and a
Fortran program was written to compute the other quantities required.

; The practical appropriateness indices and LR) were then computed for

the 4000 response vectors in the normal sample. The item and test
statistics estimated from the test norming sample were used in these

calculations. This procedure simulates the process by which practical

R
DI A

"

appropriateness indices would be computed in many applications. Optimal

indices were also computed for the normal sample for four aberrant

e W v

conditions: 17% spuriously high, 33% spuriously high, 17% spuriously low,
and 33% spuriously low. The ICCs and COCCs used to generated the data were
i used to compute LRp and LR, .

o The practical appropriateness indices were computed for each of the 16

aberrant samples. In addition, the 17% spuriously high optimal index was

'g computed for the four samples with this form of aberrance, the 33%
ﬂ spuriously high optimal index was computed for the four samples with this

form of aberrance, etc. The proper interpretation of the optimal indices
computed in the present research is the following: They are optimal for the

specified form of aberrance, say 17% spuriously high, in a population where

. the ability density is a truncated normal for both the normal and aberrant 1
& populations and a response vector is either normal or 17% spuriously high. :
Ly .
h The normal group does in fact have this ability distribution. By '

stratifying on a subinterval of [-%.0, 3.5] for the aberrant group, we
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determined the power of the index that is optimal for the popu.ation as i
whole in a particular subpopulation.

Evaluation Criteria. The main criteria for evaluating the

g' appropriateness indices were the proportions of aberrant response patterns
correctly identified as aberrant when various proportions of norma. ~esponse
patterns were misclassified as aberrant. These proportions shall be

T; presented for all 16 aberrance conditions. This allows us to determine what
types of aberrant response patterns have acceptably high detection rates
using optimal methods and using practical methods. The characteristics of
response patterns that cannot be detacted are evident as a consequence of
examining the 16 aberrance conditions separately.

Results

The results for the spuriously high conditions are given in Tables 1

R N R U

through 4. The results for the lowest ability group are shown in Table 1.
In this table it is evident that cheating on five randomly selected items is

not very detectable: At a 2% false alarm rate only 28% of the simulated

.. e w e

cheaters are detected by the optimal LRp index. The best of the practical
indices, z, and F2 , detect 18% and 20%, respectively. Cheating on 10
items (the 33% condition) is reasonably detectable. For example, LRp

- detects 61% and LR, detects 54% at a 2% false alarm rate. At this false
alarm rate, z, , F2 , and T4 detect 44%, 41§, and 50%, respectively,
Finally, detection rates for optimal indices computed from true and

estimated ICCs are very similar for almost all false alarm rates in Tahle 1.

. Insert Tables 1 through 4 about here
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provided by tests Dy writing items with highly informative incorrect
options.

An appropriateness measirement simulation study was also conducted to
compare the polychotomous model with a dichotomous submodel, namely the
tnree-pdrameter logistic., Several important results were obtained. First,
for tne spuriously low treatment that simulates atypical educations,
misgriiding answers to a portion of the test, unusual creativity, etc., we
f.und that Hptimal three-parameter logistic appropriateness indices fell far
anort cf treis optimal polychotomous model counterparts. At some false
1.4rm rates, tne rates of detection of aberrant response vectors were more
*nan 130% aigner for tne polychotomous optimal indices. Thus
1ppropriateness medasurement constitutes one important practical testing
prob.em <here substantial gains are made by the use of a polychotomous item
re3ponse model.

The results of the appropriateness measurement simulation study also
showel that tne practizal polychotomous model index zp was not a
carticuiarly good 1ndex:  [ts detection rates were not close to optimal for
2ither 3puriously high or 3puriously low treatments. This result, in
Cndanetion with the results described, previously point to the need to
iwvide netler polychutomous appropriateness indices that can be used in
PTebloc4L 3ltuations,

L trnird resylt obtained in the appropriateness measurement research is

tragt e

o, . Foo, and  Tu 1ndices effectively detect iberrance in
reoalion to three-parameter logi3dtiz optimal indices (but not polychotomous
mwode, sptimal 1ndicest, Therefore, 1f one s satisfied with dichotomous

voring Hf 1tem responses or some particuidr appiicdation, then 2, , F2 ,

T4 an he 3sed with confldence Lo detect inappropriate test scores.
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Means for implementing appropriateness measurement in practical settings are
discussed by Drasgow and Guertler (1987).

Finally, the LR,' indices provided detection rates that were nearly as
high as the rates provided by the optimal LR, indices. Thus, the three-
parameter logistic optimal indices seem to be robust to item parameter
estimation error. This result is surprising because extensive computations
are required to evaluate LR,'; small errors (in ICC values) would be
expected to grow progressively larger as the computations progressed.
Nonetheless, only small differences between values of LR, and LR,' were
observed for individual response patterns. Thus, we are encouraged to
continue research on "almost-optimal" indices that are based on likelihood
ratios and could be used in practical settings.

Conclusion

COCC estimation provides opportunities to improve testing in a variety
of ways: ability estimation, the theory and practice of item writing,
appropriateness measurement. Applications in areas such as item and test
bias and adaptive testing may also be fruitful. Consequently, we conclude
that there 1is information in incorrect responses and that polychotomous item

response models can make important contributions to psychological testing.
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Table 1
Selected ROC Points for Spuriously High
Response Patterns Generated from the 0-9% Ability Range

False Proportion Detected by
Alarm
Rate LRp LR, LR} zp z, F1 F2 S T2 T4 JK 0/E

17% Spuriously High Treatment

001 O4 O4 OF 00 03 00 Ol 00 00 O 00 00
005 11 12 11 03 06 00 08 00 O4 04 02 02
.01 16 19 17 05 12 02 13 03 07 06 03 Ok
.02 286 29 26 08 18 O4 20 12 13 11 06 0T
.03 3 33 30 11 25 07 24 18 18 14 09 09
. .0l 38 37 3w 13 29 10 28 24 22 18 13 12
v .05 43 40 38 15 33 15 32 27 26 22 15 14
e .07 48 45 44 19 M1 24 40 37 32 26 22 19
.10 52 S0 49 26 51 36 50 49 42 33 29 25

33% Spuriously High Treatment
. 001 23 24 17 02 10 00 o4 00 06 12 00 00
.005 40 33 27 07 25 00 15 00 28 27 00 o4

.0 45 45 43 12 30 01 2T 06 37 3% c¢o0 09
.02 61 54 52 17 W4 05 WM 17 50 46 O1 17
.03 67 59 58 22 50 16 47T 24 60 52 02 24
.04 T 64 63 25 56 23 55 32 65 57 03 37
.05 72 67 66 3 62 30 59 37 69 61 03 37
.07 MmN 70 37 66 42 68 47 T4 67 OT 47

.10 81 7% 75 46 715 57 76 60 81 73 19 57




Table 2
Selected ROC Points for Spuriously High
Response Patterns Generated from the 10-30% Ability Range

False Proportion Detected by
Alarm
Rate LRp LR, LR} zp Z, F1 F2 S T2 T4 JK O/E

17% Spuriously High Treatment
.001 02 01 00 00 02 00 00 00 00 01 00 00
.005 09 07 o7 01 05 00 03 00 05 ol 00 01

.01 14 14 14 ou 09 00 06 00 07 07 00 03
.02 26 25 22 06 14 o1 " ou 14 12 01 05
.03 31 29 29 08 19 03 14 06 20 16 02 o7
.0l 34 33 33 10 23 06 18 10 24 20 02 10
.05 40 36 37 12 27 09 21 12 27 23 03 14
.07 46 43 43 16 34 14 27 18 33 28 06 20
.10 52 50 51 23 43 24 37 28 42 34 14 27
33% Spuriously High Treatment

001 16 16 13 00 o4 00 00 00 03 09 00 01
.005 31 27 23 03 14 00 07 00 20 23 00 06
.01 37 40 39 05 20 00 15 01 28 29 00 10
.02 53 50 50 08 30 03 27 06 y2 41 00 20

.03 61 56 57 12 37 08 3% 10 51 00 27
.04 65 63 62 14 42 12 42 16 58 53 00 34
.05 68 66 65 19 493 1T 46 20 62 58 00 4O
.07 73 70 70 25 54 28 56 29 67 63 05 51
.10 78 T4 75 33 64 44 67T M T4 70 18 60




Table 3
Selected ROC Points for Spuriously High
Response Patterns Generated from the 31-48% Ability Range

. False

Alarm

Proportion Detected by

Rate

LR LR, LR} z 2z, F1 F2 5 T2 T4 JK O/E

17% Spuriously High Treatment

.001
.005
.01
.02
.03
.04
.05
« .07
‘ 10

33% Spuriously High Treatment

. 001
.005
.01
.02
.03
.0l
.05
.07
.10

00 00 00 00 01 00 00 00 00 01 00 00
03 03 O4 00 03 00 O1 00 O4 O4 00 00
06 07 08 02 06 00 02 00 06 06 00 O1
15 15 14 03 09 00 05 00 12 12 00 05
20 19 19 05 14 03 07 02 17 15 00 08
24 23 24 06 17 06 16 03 21 18 00 10
29 26 28 07 20 07 13 O4 23 22 00 13
3 3% 35 10 25 12 18 07 29 26 01 20
43 42 43 15 33 18 26 12 36 32 07 29

06 10 07 ©00 02 00 O00 OO0 02 06 00 O1
17 16 14 0 07 00 03 00 12 16 00 05
22 27 26 02 10 00 O08 o00 18 22 00 08
39 36 37 o4 17 o4 16 02 27 32 00 17
48 43 45 05 22 08 21 05 36 38 00 23
53 51 49 07 27 12 27 07T W 43 00 29
56 55 S4 09 33 16 3N 09 45 471 00 34
63 61 61 13 37T 23 40 14 50 53 07 uy
(Al 67 68 20 46 36 51 22 59 60 19 53
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Table 4
Selected ROC Points for Spuriously High
Response Patterns Generated from the 49-64% Ability Range

False Proportion Detected by
Alarm
Rate LRp LR, LR} zp Z, F1 F2 S T2 Ty JK O/E

17% Spuriously High Treatment

. 001 00 00 00 00 00 00 00 00 00 00 00 00
.005 00 00 00 00 01 00 00 00 02 03 00 00
.01 02 01 01 00 03 01 o1 00 o4 oY 00 00
.02 07 06 03 01 05 o1 03 00 o7 08 00 00
.03 iR 09 05 01 08 04 04 00 1 1 00 06
.04 14 13 o7 02 10 06 o7 ot 14 14 00 09
.05 18 16 09 03 13 08 08 01 16 17 00 12
07 25 23 14 06 17 n 13 03 20 21 o1 17
.10 33 30 23 09 23 16 19 05 26 27 07 24
33% Spuriously High Treatment

.001 01 02 00 00 00 00 00 00 00 02 00 00
.005 05 o4 02 03 03 00 01 00 05 07 00 o1
.01 08 10 05 00 oy 02 04 00 o7 10 00 02
.02 19 16 09 01 o7 o7 08 01 12 17 00 06
.03 28 23 14 03 10 11 1 02 16 20 00 08
.04 34 32 18 03 12 14 15 03 20 25 00 1"
.05 37 37 21 05 16 17 17 04 23 29 00 14
.07 48 45 29 08 19 23 23 o7 28 35 03 20

.10 60 55 41 13 25 3N 31 12 35 4o " 28
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Table 5
Selected ROC Points for Spuriously Low
Response Patterns Generated from the 31-48% Ability Range

False
Alarm
Rate

Proportion Detected by

LR LR, LRy 2z, 2z, F1 F2 S T2 T4 JK O/E

17% Spuriously Low Treatment

.001
.005
.01
.02
.03
.ol
.05
.07
.10

01 00 00 00 00 O00 OO0 OO0 OO0 00 ©OO0 OO0
05 01 01 03 02 00 O1 00 02 02 00 OC
09 03 03 05 o4 01 02 00 03 03 O1 01
15 06 07 08 o7 02 o4 00 06 0T O1 02
18 10 12 12 10 04 05 O 09 09 02 03
21 14 15 14 13 o7 07 03 12 12 03 05
24 17 18 15 15 10 09 04 14 14 05 07
29 22 23 21 19 17 12 07 18 17 07 10
3 28 28 27 26 25 17 1 23 22 12 14

33% Spuriously Low Treatment

. 001
.005
.01
.02
.03
.0l
.05
.07
.10

o7 01 01 01 02 00 00 ©00 00 oO1 00 00
14 03 04 07 05 00 O4 00 03 o4 01 01
22 08 09 12 10 02 07 00 O5 07 02 O
30 14 16 18 15 05 " 03 09 " 04 03
36 20 22 23 20 09 13 06 14 15 07 O
41 24 26 27T 23 13 17 10 16 19 10 06
4 29 30 31 26 17 19 1" 19 22 13 07
51 36 37 36 32 27 24 17 22 27 17 1
59 44 4y 4y 38 36 31 25 29 33 24 16
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Table 6
Selected ROC Points for Spuriously Low
Response Patterns Generated from the 49~64% Ability Range

False Proportion Detected by
Alarm
Rate LRp LR; LR} zp Z, F1 F2 S T2 T4 JK O/E

17% Spuriously Low Treatment

. 001 13 02 02 00 02 00 00 00 00 01 00 00
.005 22 09 08 o 04 00 01 00 05 05 00 00
.01 26 14 13 o7 09 03 03 00 08 07 00 01
.02 32 21 20 1 14 09 07 0} i3 13 00 ol
.03 34 26 25 16 19 17 10 03 19 16 00 06
.0l 38 30 28 19 22 21 13 04 22 20 00 08
.05 41 33 31 23 25 24 15 05 26 22 00 1
.07 46 37 35 29 31 31 20 08 29 27 03 16
.10 51 42 40 37 38 34 28 13 36 32 09 21
33% Spuriously Low Treatment

. 001 24 09 08 02 08 00 00 00 03 05 00 00
.005 34 16 15 15 14 00 06 00 14 12 00 02
.01 43 25 24 23 22 03 i 01 18 17 00 03
.02 51 33 32 31 29 12 17 ou 26 25 00 08
.03 55 39 38 37 36 22 22 07 33 29 01 12
.0l 58 43 4 41 39 29 26 10 38 34 01 16
.05 61 46 45 45 43 35 29 13 i 38 02 19
.07 66 51 50 52 49 by 36 19 is hy 06 25
.10 T 58 56 60 57 52 us 27 53 51 14 33
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Table 7
Selected ROC Points for Spuriously Low

Response Patterns Generated from the 65-92% A.ility Range

False Proportion Detected by
Aiarm
Rate LRp LR, LR} zp Z, F1 F2 S T2 T4 JK ¢

17% Spuriously Low Treatment

.001 35 15 14 01 05 o1 00 00 o1 03 o pan
.005 45 33 3 09 1" 11 05 o1 11 99 00 X
3 .01 51 LR 38 i5 19 24 1 05 15 T4 00 Ou
k .02 57 46 45 20 27 40 20 13 25 21 aC  o:
.03 60 50 49 25 34 45 28 13 32 26 00 I3
[ .04 63 53 51 31 38 53 30 24 36 30 00 o]
: .05 65 55 53 35 42 57 3w 27 39 35 00 06
P .07 €8 59 57 42 50 61 41 33 43 40 Q4 10
k .10 71 63 61 51 57 65 50 41 53 48 12 10
33% Spuriously Low Treatment
3 .001 53 31 29 o4 26 00 03 00 15 22 00 02
: .005 61 44 41 25 39 05 21 02 40 39 00 09
’ .01 67 53 S1 34 52 20 34 09 47 46 00 15
.02 72 59 57 45 61 42 47 21 59 ST 00 25
: 03 75 63 61 52 67 54 54 29 67 51 00 30
N .04 77 66 63 57 70 60 61 36 71 67 00 38
.05 78 68 66 61 T4 64 64 40 T4 70 00 43
.07 81 72 70 69 79 T1 71 49 79 15 15 52

.10 84 75 T4 77 84 79 79 S8 84 80O 33 61
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Tabie 7
3e.2cted XX Puints Tor Spuridus.y LOw

Response Patterns seneratel Trom Lne +5-'0% Ati.ily Range

Falise Proportion Letected by

Alarm

Rate R LB, LR} 2 z, F Fe z T Te JK :
% P

78 Spurious.y .ow Treatment

. ) 45 2Z 2e O Ju R >0 Q¢ 5é Sy 3G I
il St 4z 4. 13 " 27 39 Q9 'e " uC Il
Gt 3¢ 49 4t - 20 43 15 i< 21 18 20 av
.02 27 54 53 26 29 55 3¢ 3 33029 33 OO
Y .33 59 58 56 32 37 50 3s 4’ L 3= J0 20
L4 73 60 58 37 41 63 41 48 87 4! 20 o1
.05 72 62 6C 40 1) o6 45 51 51 LR 20 o
.07 74 65 62 48 54 A 53 58 56 53 02 03
A1 77 68 06 58 63 75 63 65 64 62 11 06
33% Spuriously Low Treatment
.01 54 4. 40 J4 32 02 oe 00 20 33 JO 64
.00% 12 53 s 7 49 17 32 06 51 52 00C o8
.1 76 6! 59 39 62 3¢ 4e 21 59 60 00 13
.02 81 67 54 51 Al 59 61 39 69 739 00 Y
.03 83 70 68 59 77 69 67 48 T4 T4 90 27
. Ou bl T2 70 64 79 T4 Te 55 80 78 00 13
.J5 86 T4 73 68 82 78 75 59 83 & 00 38
.07 B 77 15 7% 86 B4 o0 68 86 B4 48
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Appendix 1

Joodness of Fit of Arithmetic Reasoning COCCs Estimated from a Sample of

N=2,978 and Evaluated Using the Entire Sample of N=11,914,




ITEM 1

8 ~ A +
4ot —
b 4
pme——— — e
. o
M. -
h o . ..
+ Py
> . +
— -+ 1
- : o
- - B, N
ﬁ e e
+
—_———
— s N
+ N
< V
I S b e e A .

e

0 00 OMaCoH JH - >

> - - -
> ot -
- -
» «
»
> > o
i - W 8 i

QO 0 O@mMaT @ H J H

>

-3.0

3.0

THETAH

THETA




ITEM 2

a x0oOQaCoH JH+ > QX o0oOoacC aoH JH+ >




< 4 HI HDO®DWODDI

< 4 HIM+HODDW®ODTO

._.
O

n

©
o

T N

—
O

n

) RO 5 ‘ .
ﬂc*O":i'g.l\ l‘ i’ l‘ o



< 4 HIMTH®®DWODTDU

T

————— T

P ‘ |
R

o s 4 9
o |
=] r ] s
B .si| ] I
I ,

L [ + L rmﬁr\ 4 [
ro | el | L
T | )

v J

LRI



I - - ; P P & 3 s L oxL a b1 * IO T APELS J LPS I AL Y

P =
- i 71 ] | 1
5 I ] i .
5 I . - .
a I i ! J
B .s} ] ! ]
I b - - r
‘ L
- ‘ ' :
, Y : 1 - e
. o.ole o oo ,

-

K
1. ¢
—r—t po— 2 T T T L a— T ) T g ™ T -t T T T T -t — T
! L 4 - p
&
it 4 = J
L - '

<4 HMH®D®O DD
n




< 4 HfCHD®»ODDI

< 4 HIMCrH©® D O DT

- /
.St ]
L ]
o 4
- .
o -1
o.o0L . e
l-o L] AN S S L] T A L e T T
| )
I J
|
. 5S¢t .
44

4%7
:*;i
‘-;

L AR Y T Ty
[T e
1},, !“'1?'5 o

RAFOMUMCORLIORLN
N i
F {!’A [ LI
Pl T

1
i
Wt

i s S ==

‘t
At
i
Joas




< A HIMHD®O DD

< 4 HMrH®DO DI

AR NOAGANMIANANA ORI By S 5, §
‘~‘;u-'q'1,v'.t"c'a ,t t”«”u ,‘ h,g ,0“;',-'.

'l‘ ’-"7‘7. x4




< A HMrH®DO®O DD

l'o T T ' Y Y T T T T T T r T u T

P 4

a i ] s ]
a i 4 X !
B X 1 4 ]
A L 1 X J
B .si ] ' ;
I - 1 s ]
L

I - j! - 3 <
T s \ 1 5 J
Y ' 4 L 1

SOODENY)
s f“'.@
v"“;"):n‘i- ‘



ITEM 9

e Y ey —— — gy~

o

w o

o OO aC OH JHFEF >

)

]

| aL
/
O
H
Ny
H o
1
il
B
I.+|
4
+ M
| o
A 1 A - a
|
T B —r T T O
| o
\+
L\ -
1 \
; 4
——<
————A k
40O
lo
L - A 3 ] 3
n o |
| o

QO oo cCcoH JHEF >

THETAR

THETA




\3
/
4 .\
L
- (1
- t
1o W
| I
#.n.
|
-+
i +
b [ O
= S N
|
2
E LA
—l
H
|
| a
TI
u
{ I
—Il
|
o 0" B o
- ' o
O 0 O0OmMaTOH JH >




0

a O Oaoad oHXH

JH - >

O -

QO a Omaa o e

RIS

>

O
m

THETR

THETA




ITEM

o 0O aCoH JHEF >

O
o

o oo aCoH JHF >

THETA

THETA




ITEM B

< 4 HMCTHD®O DD
n

< 4T HO® DO DTI
n

o
O
!

—_ [ S SN S—




i

1)

9

S T-«‘
i
|
+
~ >
4
!
.ﬁ M
R
e
&
-
*l‘
W
ﬁlldll v - v e e T r =)
|
!
‘ 1
e &
Wﬁ
}
-
/
+
\\
) wn D]
- ' o
Q 0 OO I O H JH - >

)]

S—— v ' A v - T - -
—
“+
e e — y A o,
j‘lﬂv] ¥ A Al T I S h g T T Rt
4
)
4
y
A [ N A A A ' A
wn O
. .

O 0 O0Oodao+H _JHEF >

THE TS

THETA




1.0 __ . — —
) L ; 4
R .,
C f ) -
|
; 1]
B St /+ ‘
I _ y 4 +
: -1 T 1
- 1 H’ﬁ ]
% } ]

1.0 __ .
P
=
~ I l 3
e i | _
a 4 1 A
8 1 j
I ] |
- l
I % ;
T L I l
A4 I 4 b + | N I }
. Ol " T S N — . &Mn X X

THETAR THETAR




ITEM 16

O

QO Q00 d o+ JH+ >

@)

§9

a @0 00 oH JHF~ >

]

o

|

THETA

THETA




< 4 HIMTrTHODD®O DD

< 4 HIMH®D®O DU

—
.

o




ITEM 18

e 3

axoaocacaoHAJHEF >

~-3.

0

3.0

.....

o

9 .

. n P | A m
!

o
o

THETA

THETA




[
o

< 4 HMH®DD®ODTDO
n

< 4 HMCH®® DL O™DDI
n

". Mo } i‘
¥4 ;lga“

W




< 4 HMCTHDDWLO®DVTD

< 4 HIMCrH®DWO DD

T

THETAR

——

X
L
b

. .

— — -
b~ -
- 4
X ]
- -
b -

[
! ' ]
bbby

4s







-
L -
- -

‘ !
L ; 4 i,
L)
"
1 . B S | L 1 1 Vi 4 ' “
oy
E
.
¥
]
e —r——t - ¢
- 9 ¥y
I
L J
.

1T T Y

<«
-—




ITEM 23

-3

o
-

n

a xcoaoacaoH JH +~ >

3.0

O OO aCOoOH JHKF >

0.0

-3.0

THETA

THETA




%4

ITEM

a0 CaoH JHKF >

Y .vr

— o ©
1 .
™

b <

R #

2 #
{io

+ \]
| Ke)
" e o1
|
, —_— __©
\.&

e A e A

. — + \
T 4
W L

J
MMW. .
L

4

e

iy

O xo0ooOacCoH JH+ >

0.0

-3.0

~

THETA

THETA




ITEM &

e A ke
r -
A A e - - A A A 4 i W—
u (@]
. .
(@]

O aO0Oo0odoH JHEF >

—

JI‘I1||JC'.<J\'IJJ\!‘1\04‘»!I4]IJ o
)
3
!
F 9
10O
-
a2 AO
4 .
i 1 4 L " 3 " A 2 m
t
r v T B - v o
™
1
L
B {0O
i 1
r/ h O
b { =
" e U i A . A (s8]
tn o |
. o
O 0 0OOoOd oH 1 H+ >

THETA

THETA




< 4 HIMCTH2D®ODTIU

< 4+HIMTH®DBTO VTV

DA P —————p—————p e X
g o r

E

-

-

+

r

F

r

el T SR T Y TSN G SN S WUV SUM S
g e S e s S S e ————
J o J

L 4

J s

S ’
P Wyt bt g Uy v

ORI N OO R N ) +*

1 2 ¢

St k_.;%;,i,’ﬂ'“a,tin’ EXN ‘ N o,

i.)

are

LA

OO ‘ 1,00 ! t, "! .

[N } AN : W l.:

‘O¢|; ’i R ,‘.“. i
lt',v* e R ""» ",c *zi‘i“‘ﬁ K



ITEM 2

< 4+HTHDDD®O DD
n

- W 5
- %l k, '
v | ‘ WWJ
. 0.0 i o L . N N =F 5 .
1.0 — . . .
=] _|T |
R : F
O E -
B |
. A | ] . ]
® B .s it |
:[* 1 ! |
R [
I
T i -
Y - 1 - ++ 1

O. vl o . b — Per el ke ek e Y

—. -3.0 0 3.0 -3.0 0 3.0
THETAR THETR




ITEM 28

—t A ) S W

wn

a0 acCcOoOH JH >

-3.0

9 0O aTComH 3 H- >

3.0

3.0

-3.0

THETA

THETA




< 4 HIMHAH®DO DI
n

1.0 ﬁ — o
=)
: R [ W
: 0 } i 1
, B 1 L J
Q "
B .si I
I T E - 4
- i
1 I
T | 1 1
v J
0.0l L e b
-3.0 o 3.0 -3.0 o) 3.0




T T T T T T T ™ g T Y T T T T T 2 Y T -r T T T v T
- - S -
L g L 4
3 E b 4
o L 3 E

<-4 HMTH®D®O DD
n

< 4 HIMHDDW®O VT
Ui

.
.ol i o o oo N U . SEU

a P E
et Rt

OOOOOC
«'U‘q'ﬂ N ‘H 0‘. R
5 J‘-‘el‘i‘:c"‘c‘. ‘ “\"' "




MFS Theory

Appendix 2

Estimated COCCs, Simulation COCCs, and

Empirical Proportions from Estimation Sample.
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